If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x-103=0
a = 4; b = 1; c = -103;
Δ = b2-4ac
Δ = 12-4·4·(-103)
Δ = 1649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1649}}{2*4}=\frac{-1-\sqrt{1649}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1649}}{2*4}=\frac{-1+\sqrt{1649}}{8} $
| 4(4+m)=44 | | X+2=2x-1=-13 | | x+11+8x-20=180 | | m-8=2.14 | | 54=((x+3)/2+2x/2)*(x+1) | | (8-4x)/(-2)=-(-4)/(-2) | | w+|-2.8|=4.5 | | 0=18x+32 | | 2=0.2x-0.3x-3 | | 7x+24x-16=0 | | d/3+7=-5 | | 72=18x-x^2 | | -19=n/20 | | 5y-5=2y-7 | | 37-2x=9 | | 72=18x-(x*x) | | 6x-19+5x+12=180 | | 30-2t=18 | | 2−3x=−x−8 | | 0.3(x+10)=-4 | | -20w+10=40 | | 3x-1=x+3+x+3 | | 5=e/2.2 | | y+28=73 | | -3(8x+5)-x=-190 | | 24=-0.05x^2+2.2x+7 | | Y=(6-2x)(6-2x)(x) | | 47x+3=1/2(53x-2) | | 5b=5.6 | | 11x-8=11x+12=180 | | m+2/3=-1/21 | | 4x-9x+17=-4+2x |